論文快讀, 技術 當 LLM 的觸角延伸到表格資料,有機會一統江湖嗎? 表格資料(Tabular data)是關鍵的機器學習資料。儘管傳統機器學習方法如梯度提升樹(包含知名的 LightGBM 以及 XGBoost)在這方面表現突出,但大型語言模型(LLM)的興起帶來了新的挑戰與機會。本文探討 LLM 如何在未直接接觸資料的情況下分類表格資料,並分析「TabLLM」項目的創新方法和成果。
技術, 論文快讀 圖片「全域特徵」與「局部特徵」我都想要!有效整合的方法介紹 本文旨在尋找一種方法,能有效地結合局部與全域特徵,提供模型更全面的資訊。為此,我們將介紹一種專門設計來整合這兩種特徵的新型 CNN 模型,稱為 Global Local Mixture Network(GLMNet)。
技術, 論文快讀 Mini DALL·E3:透過對話繪製圖片 DALL·E3 是 OpenAI 在2023年10月發布的圖像生成模型,不過,使用者僅能利用咒語與參數調整,才能繪製出滿意的圖片,在使用的自由度上大幅受限。為此,有研究者提出名為 Mini DALL·E3 的模型,近一步說明這一類利用自然語言處理跟圖像生成模型的架構,讓使用者後續能更有效的應用並生成出貼近想法的圖片
MLOps, 技術解析, 技術 由開發團隊的需求出發,從無到有設計一個實用的 MLOps 系統 Machine Learning Operations(MLOps)是持續性機器學習模型管理與部署的實踐,可以幫助機器學習模型開發團隊有效地執行模型的實驗、管理、部署等任務。任務細節多半依據團隊的實際需求客製化各種功能,並利用網路上各種不同專攻功能的套件,整合成一個 MLOps 系統。本文將從開發團隊的需求出發,依序先介紹 MLOps 系統的基本功能需求,並據此挑選套件,最後利用這些套件搭建一個實用 MLOps 系統。幫助讀者快速暸解一個實用的 MLOps 系統的設計過程。
MLOps, 技術解析, 技術 AI 專案開發一定要用 MLOps 嗎?從專案流程看起 MLOps是近來極為熱門的單字,在許多討論專案的文章或是論壇中都可以聽到,不過,實際上對於專案的幫助是什麼呢?這篇文章希望透過宏觀的角度來介紹MLOps,以及不管是完全沒接觸過AI、或是正開始學習AI的學生,甚至是熟稔AI技術但正在觀望是否要導入MLOps的工程師或主管們,都希望能透過這篇文章來讓你能更了解它。
MLOps, 實作解析, 技術 MLOps 工具介紹(一):常見的三種模型實驗管理工具 在AI專案的模型驗證階段,有許多工具可以協助團隊進行模型管理,主要目的都是在幫助團隊管理多專案與多實驗的狀況,可以輔助開發過程較為順利,所有的實驗數據都會被紀錄與備份,可以減少實驗數據遺失的風險。這些工具各有特色與強項,這篇將提供讀者幾個熱門工具建議:
MLOps, 實作解析, 技術 手把手部署HPE Machine Learning Development Environment 市面上專攻模型實驗平台的套件有非常多,之前曾介紹了如何上傳模型實驗任務,以及快速部署 MLDE 在單一電腦上。本文透過介紹MLDE的系統架構、事前準備、使用 CLI 部署及移除節點,讓讀者可以快速部署客製化的模型實驗平台在 Docker 環境中。
MLOps, 實作解析, 技術 用 MLDE 平台實作 PyTorch 卷積神經網路模型 機器學習模型的開發過程中,為了讓模型效能更好,通常資料科學家會設計實驗,擬定要嘗試的模型並對各個模型嘗試不同的超參數組合,以便從中找出表現最好的組合。正是因為要嘗試的組合非常多,可以想像過程中所產生的結果也不可計數,過往需要仰賴人工手動填寫表格,以利管理。